
I/O Ports programming

Kizito NKURIKIYEYEZU, Ph.D.



AVR I/O ports
All AVR Ports have true Read-Modify-Write functionality. Each pin on a port
can be modified without unintentionally modifying any other pin
Three I/O memory address locations allocated for each port

Data Register – PORTx (Read/Write)
Data Direction Register – DDRx (Read/Write)
Port Input Pins – PINx (Read)

FIG 1. Relations Between the Registers and the Pins of AVR

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 1 / 9



AVR I/O ports
DDRs and PORTs have a zero initial values for all bits being 0.
Writing a 0 to a bit in DDRD sets the corresponding pin to input (and a 1 will
set the pin to output). This implies that all pins are initially configured for input.
When set as an input pin, a pull-up resistor can be activated by writing a 1 to
the corresponding PORTD bit.
Output buffer can source or sink an absolute maximum current of 40mA per
I/O pin and the whole device can cope with a total of 200mA. (see datasheet)

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 2 / 9



Other usage considerations
Regardless of the setting of the DDRx register, the port pin can be read from
PINx. Thus, an driven output value in PORTx can always be read in PINx.
When the “pull-up disable bit” in the Special Function I/O Register (SFIOR) is
set, all pull-ups are disabled regardless of the setting of DDRx and PORTx.
Pullups are also disabled during reset.
Input pins have a 1.5 clock cycle delay before a new value can be read. Thus 1
NOP instruction (short delay) necessary to read updated pin
Use pull-ups on unused I/O pins to lower power consumption.
Using alternative functions of some port pins does not effect other pins.
When configuring pins as output pins with HIGH logic, make sure that the pin
is not directly connected to the ground.
When configuring pins as output pins with LOW logic, make sure that the pin is
not directly connected to Vcc. When configuring pins as input pins, the internal
pull-up structure must be kept in mind and connections should be made
accordingly.

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 3 / 9



Bare metal AVR I/O programming
How do you change the state of a specific pin in an AVR MCU?
For instance, let us say we want to blink an LED connected to pin 5 of PORTB
of the ATMEGA328.
In arduino, this is done with the following code

1 #define LED_BUILTIN 13
2 void setup() {
3 // initialize digital pin LED_BUILTIN as an output.
4 pinMode(LED_BUILTIN, OUTPUT);
5 }
6 void loop() {
7 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on
8 delay(1000); // wait for a second
9 digitalWrite(LED_BUILTIN, LOW); // turn the LED off

10 delay(1000); // wait for a second
11 }

LISTING 1: Blink LED with Arduino

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 4 / 9



Bare metal AVR I/O programming
The above code, however, hides lots of details
In reality, the code is changing the state of some memory address.
If you know the memory address, you can manually change it
These details are typically found in a datasheet of each MCU
In the case of the ATMega328, this information is found in Figure 7-2 of the
datasheet

FIG 2. Data Memory Map

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 5 / 9

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf


Bare metal AVR I/O programming
In a similar manner, page 100 of the datasheet shows the address of PORTB

FIG 3. PORTB Data RegisterKizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 6 / 9



Bare metal AVR I/O programming
As we known the address of PORT, the previous code could be written as

1 int main (void)
2 {
3 while(1)
4 {
5 // Turn on the LED
6 *((volatile byte *) 0x25)|= (1 << 5);
7 // Delay 1 second (Not implemented)
8 // Turn off the LED
9 *((volatile byte *) 0x25)&= ~(1 << 5);

10 }
11 }

LISTING 2: Blink LED with AVR registers

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 7 / 9



Bare metal AVR I/O programming
#include <avr/io.h> header includes the apropriate IO definitions for the device
that has been specified by the -mmcu= compiler command-line switch.
For example, for the ATMEGA328, this header will indirectly includeanother
header “/avr/include/avr/iom328.h” which define statements are used to make
shorthand notation for ports and bits.

1 #define PINB _SFR_IO8(0x03)
2 #define DDRB _SFR_IO8(0x04)
3 #define PORTB _SFR_IO8(0x05)

Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 8 / 9

https://github.com/vancegroup-mirrors/avr-libc/blob/master/avr-libc/include/avr/iom328p.h
https://github.com/vancegroup-mirrors/avr-libc/blob/master/avr-libc/include/avr/iom328p.h


Bare metal AVR I/O programming
We will use the AVR GCC Compilers for AVR1 and the AVR Libc2.
A simple introduction can be found at this website3.
With this approach, the blink LED can be simplified

1 #include <avr/io.h>
2 #include <util/delay.h>
3 int main(void){
4 DDRB=(1<<PB5);
5 while(1){
6 PORTB=(1<<PB5);
7 _delay_ms(1000);
8 PORTB=(0<<PB5);
9 _delay_ms(1000);

10 }
11 }

LISTING 3: Blink LED with AVR registers
1https://gcc.gnu.org/wiki/avr-gcc
2https://www.nongnu.org/avr-libc/
3https://sites.google.com/site/avrtutorials/tutorials/first-program
Kizito NKURIKIYEYEZU, Ph.D. I/O Ports programming September 19, 2022 9 / 9

https://sites.google.com/site/avrtutorials/tutorials/first-program
https://gcc.gnu.org/wiki/avr-gcc
https://www.nongnu.org/avr-libc/
https://sites.google.com/site/avrtutorials/tutorials/first-program


The end


